
AMASSACHUSETTSLABORATORY FOR INSTITUTE OFCOMPUTER SCIENCE TECHNOLOGY

MIT/ILCS/TM-442

m ARE WAIT-FREE
N ALGORITHMS FAST?I

DTICSELECTE
MAR27199111

~D

Hagit Attiya
Nancy Lynch

Nir Shavit

Approve to T - e eT A

March 1991

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

22 089

igclassified
XICURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM 442 N00014-89-J- 1988

U. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science (applicl) Office of Naval Research/Dept. of Navy

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (ft) State, and ZIP Code)

545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If appliable)DARPA/DOD

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT [TASK YWORK UNIT
1400 Wilson Blvd. ELEMENT NO. NO. NO. ACCESSION NO.
Arlington, VA 22217

11. TITLE (Include Security Classification)

Are Wait-Free Algorithms Fast?

12. PERSONAL AUTHOR(S) Hagit Attiya, Nancy Lynch, Nir Shavit

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year. Month Oay)lS.PAGE COUNT
Technical I FROM rhTO - I March 1991 '7;J5 A40

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necemry and identify by block number)

The time complexity of wait-free algorithms in "normal" executions, where no failures occur
and processes operate at approximately the same speed, is considered. A lower bound of log n
on the time complexity of any wait-free algorithm that achieves approximate agreement among
n processes is proved. In contrast, there exists a non-wait-free algorithm that solves this
problem in constant time. This implies an fl(log n) time separation between the wait-free and
non-wait-free computation models. On the positive side, we present an O(log n) time wait-free
approximate agreement algorithm; the complexity of this algorithm is within a small constant
of the lower bound.

20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
rI UNCLASSIFIED/UNUMITED r- SAME AS RPT. 0- DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (ic/ude Area Code) 22C. OFFICE SYMBOL
Carol Nicolora (617) 253-5894

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASIFICATION OF THIS PAGE
All other editions are obsolete

*" 0A& hmiet ofnfel IS.-074@
Unclassified

Are Wait-Free Algorithms Fast?

Hagit Attiyat Nancy Lynch$ Nir Shavit§

February 7, 1991

*A preliminary version of this work appeared in the Proceedings oj the 31" Annual Symposium on Foun-
dations of Computer Science, St. Louis, October 1990. This work was supported by ONR contract N00014-
85-K-0168, by NSF grants CCR-8611442 and CCP,8915206, and by DARPA contracts N00014-89-J-1988 and
N00014-87-K-0825. 1"-

tl)p fComputer Science, Technion, Haifa 32000, Israel. This work was performed while the athor was
at MIT.

tLaboratory for Computer Science, MIT, Cambridge, MA 02139.
Laboratory for Computer Science, MIT, Cambridge, MA 02139. Part of this work was performed while the

author was at the Hebrew University and at the IBM Almaden Research Center.
Keyword: Asynchronous distributed systems, shared memory, wait-free algorithms, read/write atomic regis-
ters, lower bounds.

Abstract

The time complexity of wait-free algorithms in "normal" executions, where no failures occur
and processes operate at approximately the same speed, is considered. A lower bound of log n
on the time complexity of any wait-free algorithm that achieves approrimate agreement among
n processes is proved. In contrast, there exists a non-wait-free algorithm that solves this
problem in constant time. This implies an fl(log n) time separation between the wait-free and
non-wait-free computation models. On the positive side, we present an O(log n) time wait-free
approximate agreement algorithm; the complexity of this algorithm is within a small constant
of the lower bound.

Accesion For

NTIS CRA&I - -
DTIC TAS Ej

Justificatio.i

Dist ibutioa I I
-I

Availabiliy o...

tAvailDit Spca

1 Introduction

In shared-memory distributed systems, some number n of independent asynchronous processes
communicate by reading and writing to shared memory. In such a computing environment, it is
possible for processes to operate at very different speeds, e.g., because of implementation issues
such as communication and memory latency, priority-based time-sharing of processors, cache
misses and page faults. It is also possible for processes to fail entirely. Wait-free algorithms
have been proposed as a mechanism for computing in the face of variable speeds and failures: a
wait-free algorithm guarantees that each nonfaulty process terminates regardless of the speed
and failure of other processes ([23, 28]).1 The design of wait-free algorithms has been a very
active area of research recently (see, e.g., [1, 2, 4, 14, 23, 28, 29, 32, 42, 43, 45, 481).

Because wait-free algorithms guarantee that fast processes terminate without waiting for
slow processes, wait-free algorithms seem to be generally thought of as fast. However, while
it is obvious from the definition that wait-free algorithms are highly resilient to failures, we
believe that the assumption that such algorithms are fast requires more careful examination.

We study the time complezity of wait-free and non-wait-free algorithms in "normal" exe-
cutions, where no failures occur and processes operate at approximately the same speed. We
select this particular subset of the executions for making the comparison, because it is only
reasonable to compare the behavior of the algorithms in cases where both are required to
terminate. Since wait-free algorithms terminate even when some processes fail, while non-
wait-free algorithms may fail to terminate in this case, the comparison should only be made in
executions in which no process fails, i.e., in failure-fjee executions. The time measure we use
is the one introduced in [26, 271, and used to evaluate the time complexity of asynchronous
algorithms, in, e.g., [3, 12, 34, 35, 44]. To summarize, we are interested in measuring the time
cost imposed by the wait-free property, as measured in terms of extra computation time in the
most normal (failure-free) case.

In this paper, we address the general question by considering a specific problem-the ap-
proximate agreement problem studied, for example, in [15, 19, 20, 36]; we study this problem
in the context of a particular shared-memory primitive-single-writer multi-reader atomic reg-
isters. In this problem, each process starts with a real-valued input, and (provided it does not
fail) must eventually produce a real-valued output. The outputs must all be within a given
distance e of each other, and must be included within the range of the inputs. This problem,
a weaker variant of the well-studied problem of distributed consensus (e.g., [21, 30]), is closely
related to the important problem of synchronizing local clocks in a distributed system.

Approximate agreement can be achieved very easily if waiting is allowed, by having a
designated process write its input to the shared memory; all other processes wait for this
value to be written and adopt it as their outputs. In terms of the time measure described
above, it is easy to see that the time complexity of this algorithm is constant-independent

'Wait-free is the shared-memory analogue of the non-blocking property for aynchronou transaction systems
(d. [10, 47]).

of n, the range of inputs and e. On the other hand, there is a relatively simple wait-free
algorithm for this problem, which we describe in Section 3, and which is based on successive
averaging of intermediate values. The time complexity of this algorithm depends linearly on
as, and logarithmically on the size of the range of input values and on 1/e. A natural question
to ask is whether the time complexity of this algorithm is optimal for wait-free approximate
agreement algorithms.

Our first major result is an algorithm for the special case where n = 2, whose time com-
plexity is constant, i.e., it does not depend on the range of inputs or on - (Section 5). The
algorithm uses a novel method of overcoming the uncertainty that is inherent in an asyn-
chronous environment, without resorting to synchronization points (cf. [221) or other waiting
mechanisms (cf. [12]): this method involves ensuring that the two processes base their decisions
on information that is approximately, but not exactly, the same.

Next, using a powerful technique of integrating wait-free (but slow) and non-wait-free (but
fast) algorithms, together with an O(log n) walt-free input collection function, we generalize the
key ideas of the 2-process algorithm to obtain our second major result: a wait-free algorithm
for approximate agreement whose time complexity is O(log n) (Section 6). Thus, the time
complexity of this algorithm does not depend on either the size of the range of input values or
on e, but it still depends on n, the number of processes.

At this point, it is natural to ask whether the logarithmic dependence on n is inherent
for wait-free approximate agreement algorithms, or whether, on the other hand, there is a
constant-time wait-free algorithm (independent of n). Our third major result shows thai the
log n dependency is inherent: any wait-free algorithm for approximate agreement has ime
complexity at least log n (Section 7).2 This implies an fl(log n) time separation between the
non-wat-free and wait-free computation models.

We note that the constant-time 2-process algorithm behaves rather badly if one of the
processes fails. The work performed in an execution of an algorithm is the total number of
atomic operations performed in that execution by all processes before they decide. We present a
tradeoff between the time complexity of and the work performed by any wait-free approximate
agreement algorithm. We show that for any wait-free approximate agreement algorithm for 2
processes, there exists an execution in which the work exhibits a nontrivial dependency on e
and the range of inputs.

In practice, the design of distributed systems is often geared towards optimizing the time
complexity in "normal executions," i.e., executions where no failures occur and processes run at
approximately the same pace, while building in safety provisions to protect against failures (cf.
[31]). Our results indicate that, in the asynchronous shared-memory setting, there are problems
for which building in such safety provisions must result in performance degradation in the
normal executions. This situation contrasts with that occurring, for example, in synchronous
systems that solve the distributed consensus problem. In that setting, there are early-stopping
algorithms (e.g., [16, 18, 40]) that tolerate failures, yet still terminate in constant time when no

2'The lower bound is attained in an execution where processes run synchronously and no process fails.

2

failures occur. The exact cost imposed by fault-tolerance on normal executions was studied,
for example, in [9, 18, 40]. For synchronous message-passing systems, it has been shown that
non-blocking protocols take twice as much time, in failure-free executions, as blocking protocols
([10]).

Recent work has addressed the issue of adapting the usual synchronous shared-memory
PRAM model to better reflect implementation issues, by reducing synchrony ([12, 13, 22, 41,
37]) or by requiring fault-tolerance ([25, 24]). To the best of our knowledge, the impact of
the combination of asynchrony and fault-tolerance (as exemplified by the wait-free model) on
the time complexity of shared-memory algorithms has not previously been studied. In [381,
Martel, Subramonian and Park present efficient fault-tolerant asynchronous PRAM algorithms.
Their algorithms optimize work rather than time and employ randomization. Another major
difference is that they assume that inputs are stored in the shared memory, so that every
process can access the input of every other process.

The rest of the paper is organized as follows. In Section 2 we present formal definitions of the
systems considered in this paper and introduce the time measure. The approximate agreement
problem is defined in Section 3, where we also present a fast non-walt-free algorithm and a
slow wait-free algorithm for reaching approximate agreement. Section 4 introduces a "bias"-
function on which the algorithms in the following sections are based. Proofs of the various
properties of this function are, to ease the presentation, deferred to Section 9. A constant time
wait-free algorithm for approximate agreement between two processes is presented and proven
correct in Section 5; key ideas from this algorithm are used in the O(log n) time wait-free
approximate agreement algorithm presented in Section 6. Section 7 contains the log n time
lower bound for wait-free approximate agreement algorithms. Section 8 presents the lower
bound for the tradeoff between the time complexity and the work complexity of a wait-free
algorithm for approximate agreement. We conclude, in Section 10, with a discussion of the
results and directions for future research.

2 Model of Computation and Time Measure

In this section we describe the systems and the time measure we will consider. Our definitions
are standard and are similar to the ones in, e.g., [3, 23, 28, 33, 34].

A system consists of n processes P,... , p, -I. Each process is a deterministic state machine,
with a possibly infinite number of states. We associate with each process a set of local states.

Among the states of each process are a subset called the initial states and another subset
called the decision states. Processes communicate by reading and writing to single-writer
multi-reader atomic registers RI, R2 ,... (also called shared variables). Each process pi has two

atomic operations available to it that operate on a shared register R:

* write(R, v) writes the value v to the shared variable R.

* read(R) reads the shared variable R and returns its value v.

3

A system configuration consists of the states of the processes and the registers. Formally,
a configuration C is a vector (so,.. .,s-,.vi,...) where si is the local state of process pi
and vi is the value of the shared variable Rj. Each shared variable may attain values from
same domain which includes a special "undefined" value, -I. An initial configuration is a
coniguW ation in which every local state is an initial state and all shared variables are set to
-I. For a configuration C = (so,..., S,-1, vi,...), state(pi, C) denotes the state of pi in C and
vW(Rj, C) denotes the value of register RI in C, i.e., state(pi, C) = si and val(Rj, C) = vj.

We consider an interleaving model of concurrency, where executions are modeled as se-
quences of steps. Each step is performed by a single process. A process pi performs either a
urite(R, v) operation or a read(R) operation (which returns a value v), but not both, performs
some local computation, and changes to its next local state. The next configuration is the
result of these modifications. We assume that each process pi follows a local algorithm A, that
deterministically determines pi's next step: Ai determines a variable R and whether pi is to
read or write R as a function of pi's local state. If pi is to read R, then Ai determines pi's next
state as a function of pi's current state and the value v read from R. If pi is to write R, then
A6 determines pi's next state and the value v to be written to R as a function of pi's current
state. An algorithm is a function A mapping each i to a local algorithm Ai for pi.

An event on pi is simply pi's index i. A schedule is a finite or infinite sequence of events.
We denote by A the empty schedule, with no events. We denote the configuration resulting
from the application of a finite schedule a to a configuration C by Ca. An ezecution fragment
starting from a configuration C is a finite or infinite alternating sequence of configurations and
events, Co, ii, C1,..., Ck-1 ,..., where C = Co and Ck =- Ck-lik, for all k > 1. We assume
that a, finite execution fragment ends with a configuration. The schedule associated with this
execution fragment is i1 ,..., il,. Conversely, the (unique) execution fragment resulting from
applying a schedule a to a configuration C is denoted by (C, o). An execution is an execution
fragment starting with an initial configuration.

Given an infinite schedule a, a process is faulty in a- if it takes a finite number of steps
(i.e., has a finite number of events) in a, and nonfaulty otherwise. An infinite schedule a
is f-admissible if at most f processes are faulty in a. In particular, a 0-admissible schedule
is called failure-free. These definitions also apply to execution fragments by means of their
aadisted schedules.

Let I be a fixed input domain and V be a fixed decision domain. Each initial state of pi is
associated with an input value in 1. For each process pi and d E V we define a subset, Did,
of the states of pi. We assume that for each pi, the sets Di,d are pairwise disjoint. We also
assume that decisions are irrevocable, i.e., the algorithm transitions are such that if pi is in a
state of Di,d it will remain in a state of Di,d. We call the set Did the d-decision states of pi.

A decision problem (or just problem) II of size n, is a relation between In and Do. An
algorithm f-solve, a decision problem II if in all executions the decisions made can be completed
to a decision vector that is in the relation H to the inputs of the processes. Furthermore, in
any f-admissible execution, every nonfaulty process eventually decides. An algorithm that

4

(n - 1)-solves a problem H is also called a wait-free algorithm for I. Intuitively, even if all

processes but one fail when a wait-free algorithm is executed, this process eventually decides.

We now define how to measure the time an execution takes.3 We assign times to events in
a schedule subject to the following constraints: (a) the time assigned to the first event of any
process is at most 1, and (b) the time between two events of the same process is at most 1.
The time of a finite schedule o is the largest amount of real time that can be assigned to the
last event in the schedule; denote this by time(o). The time between two events in a schedule
is the largest amount of real time that can elapse between these two events under any time
assignment to this schedule. We define the time taken by an execution to be the time taken
by the associated schedule. (This definition follows [34, 44].)

An equivalent definition (cf. [3]) is obtained by externally partitioning the computation
into minimal rounds: a round is any sequence of events such that every process takes a step at
least once in the sequence. A minimal round is a round such that no proper prefix of it is a
round. Every sequence of events can be uniquely partitioned into minimal rounds.4 The time
for an execution is defined to be the number of segments in the unique partition into minimal
rounds. (This is the definition introduced in (26, 27], called the round complexity in [12].)

The running time for pi in an execution of an algorithm A is defined to be the time
associated with the shortest finite prefix of this execution in which pi is in a decision state
(oo, if there is no such prefix). The time complexity of an algorithm A is the supremum of the
running times over all failure-free executions of A and all processes pi.

We conclude this section with some useful notation. Let X be a set of real numbers.
Define range(X) to be the interval [minZEx x, maxex x], if X is nonempty and 0, otherwise.
Define diam(X) to be max.,,,Ex Ii - X21, if X is nonempty and 0, otherwise. Note that if
X is nonempty then diam(X) is the length of the interval range(X). If X is nonempty, then
mid(X) = * "x+mfx2

3 Basic Solutions to the Approximate Agreement Problem

We start by defining the approximate agreement problem and describing non-wait-free and
wait-free algorithms to solve it. In the approximate agreement problem, processes start with
real-valued inputs, :0,...,:,-, and a constant e > 0 (the same e for all processes); all
nonfaulty processes are required to decide on real-valued outputs Yo,..., ,-1, such that the
following conditions hold:

Agreement: for any i,j, lyi - iyI :- e, and

Validity: for any i, y E range(f{o,... ,Z)

3Thee definitions can also be formalized in the timed automaton model ([39, 6])
4 Except, possibly, for the last segment.

5 --- -- ---

function wait-approK(z); function wait-approx(x);
begin begin

1: V 1: repeat until V0 I.; /* wait */
2: return z; 2: return V0;

end; end;
Process po Process pi, i 0

Figure 1: Fast non-wait-free n-process approximate agreement.

This problem has a simple 0(1) time non-wait-free solution, described in Figure 1. Process
p0 mainta'ns a single-writer multi-reader atomic register, VO, to which it writes its input value
as soon as it starts the algorithm. All processes wait until V is set to a value that is not I and
decide on this value. In the code, any assignment to a shared variable implies a write, and a
reference to the value of a shared variable implies a read. Upper case variables denote shared
variables, while all lower case variables are local. In this algorithm, the values returned in the
return statements are the decision values. Later in the paper., we will use this algorithm as
a "subroutine" in our main algorithm; then the values returned in the retura statements will
not be the final decision values. Similar conventions hold for later algorithms in the paper.
We have:

Theem L1 Procedure wait-apprx is a non-wait-ftee algoritrm for the approximate agree-
ment probem whose running time is 0(1).

We next present a wait-free algorithm for approximate agreement. In addition to demon-
strating that a wait-free solution exists for this problem, this algorithm will also be used as a
"building block" in the construction of a more efficient algorithm, in Section 6.

Let us begin by outlining a simple variant of the algorithm for the case of two processes.
Each of the processes pi, i E {0, 1} has a register which it can write and the other can read.
Here and elsewhere, we let i denote the index of the other process, i.e., I = 1 - i. Due to the
asynchrony in the system, it is impossible to have processes agree on one of the input values
(see [17, 21, 33]). Thus, our algorithm has them gradually converge from the input values zo
ad z, to values that are only r apart. A process pi repeatedly does the following: It writes its

value vi (initially the input value z,) into its register, and then reads pr's register. If pi reads
_L from vt, it must decide on its own value, since it can never know when pr will write its input
value (if at all, because pr could have failed before writing). If pi reads a non-I, value from vf,
it checks whether or not Ii- vi I E. If it is, pi decides on its own value. If not, p sets vi to
be SqL and repeats.

Due to asynchrony, processes do not necessarily converge "directly" to a value. Rather, the
following type of scenario is possible: Pr, having formerly written vr, reads pi's current value
vi, &ad is delayed just before writing l to its register; then pi repeatedly reads and writes,
cutting the interval in half till its value is very close to r; finaly, pr completes the write of

6

to its register, so that in fact, pi moved "too far" towards pr's old value. This can repeat
itself again and again. However, in every such step of 0(1) time (in which both pi and pi
perform a read and a write), the diameter of the proposed values, Ivi - vfl, is cut by at least a
half, and so the values converge in 0(log(z'-')) time. The algorithm is wait-free, since each
process can reach a decision independently of the other taking steps.

The algorithm for n > 2 processes is of the same flavor, but uses more complicated mech-
anisms to synchronize among processes. It uses ideas similar to those used in the randomized
consensus algorithm of [4]. The computation proceeds in (asynchronous) phases; in each phase,
each process suggests a possible decision value. In a manner similar to that of the two process
scheme above, the range of suggestions shrinks by a constant factor at each phase, until after
O(log(ism({z0...._))) phases it becomes small enough to allow processes to decide. Because
there may be more than two processes, a problem may arise in the case of an execution in
which certain slow processes temporarily stop taking steps (i.e. cease advancing in phases),
while others (more than one) continue to advance, and then those slow processes return to
taking steps again. The algorithm must allow the fast processes to coordinate a decision, while
at the same time guaranteeing that the ones that are temporarily slow, will converge to the
same decision once they resume activity. The key idea in achieving this task is to allow fast
processes that have converged to approximately the same suggested value, and are ahead of all
processes with contradictory suggestions by at least two phases, to decide. As will be shown,
it can be guaranteed that the processes at lower phases will join this decision value.

The algorithm appears in Figure 2. The inputs to each process Pi are real numbers xi and
e.5 For a real number x, define n6(z), the e-neighborhoodof z, to be [z-e, :+e]. The algorithm
employs a single-writer atomic snapshot object S as a basic memory primitive. Informally, this
is a data structure partitioned into n segments Si, each of which can be updated (written) by
one process, and all of which can be scanned (read) by any process in one atomic operation.
(More precise specifications and implementations of snapshot objects from single-writer multi-
reader atomic registers can be found in [1, 2].) For each process pi, its segment of S is an array
$5[1..] that in any state contains a finite sequence of reals - its suggestions at different phases
- indexed by phase number. Initially, each sequence is A, the empty sequence. At each phase,
after updating (writing) a suggestion to its array (Line 2), a process pi reads the arrays of all
processes (Line 3), obtaining their suggestions for all phases6 . If pi is at the maximum phase
and all the suggestions by other processes for its phase, or the phase before it, are within s of
its latest suggestion, then pi decides on its latest suggestion (Lines 4-5). Otherwise (Line 6),
pi advances to the next phase taking as its new suggestion the midpoint of all the suggestions
at the next phase if there are any, or of its current phase if there are none. Let us make two
final remarks before proceeding to prove the algorithm's properties. In the algorithm, since
a process first writes to its own sequence and then reads all sequences (including its own), it
follows that phase < max.phase. Also, note that in Line 6, r is set to be the number of a phase
for which there is at least one suggestion. Thus, the mid operator is applied to a nonempty

'Although e is described as a parameter, it is guaranteed that all processes have exactly the same value of e.
"Though one can devise algorithms that do not require a process to maintain suggestions for all put phases,

we have chosen to do so in order to simplify the exposition and proofs.

7

function wait-free-approx(z, e);
begin

1: phase := 1;
repeat forever

2: update(S, [phase] := x
3: s := scan(S) ;
4: max-phase := maxo<j<n{Isjj}; /* Note that phase < max-phase */
5: if phase = max-phase and phase >_ 2

and sijr] E ne[x] for all j E {O,..., n - 1} and all r > phase -
then return x ;

6: else r:= min{phase + I, max-phase};
7: x := mid({sj[r] : Isil - r}) ; /* Note that this set is not empty */
8: phase := phase + 1;

end repeat
end;

Figure 2: Slow wait-free n-process approximate agreement-Code for process i.

set in Line 7.

We now present the correctness proof for this algorithm. Since the only shared data struc-
ture used by the algorithm is the atomic snapshot object S, an execution of the algorithm can
be viewed as a sequence of primitive atomic operations that are updates and scans of S. Let
a be any execution, and let r > 1 be a phase number.

For any process j E 10,..., n - 1), define SP[r] to be the value written by pi to Si[r] in
e (1, if there is no such value). Note that this value is uniquely defined. Define SO[r] to be
{$r[r] 6 I : j E f0,..., n - 1}}. The following is immediate:

Lemma 3.2 Let a be an execution and a' is a finite prefix of a. Then Sa'[r] _ Sa[r], for
every r >_ 1.

Throughout the proofs in this paper, a subscript i for a procedure denotes invocation by
process pj; similarly, a subscript i for a local variable name denotes the copy of this variable
at process pi. A process pi is said to be in phase r if phasei = r. Denote by scan the scan
performed by pi at phase r, and by updater(x) the update by pi at phase r. Note that, for
r > 2, the scan performed before writing a suggestion for phase r is denoted can'-1 .

For a finite or infinite execution a and r > 1, denote

mids(a, r) = {mid(S*'[r]) : o? is a prefix of a and Sa'[r] is nonempty) ,

8

that is, the set of midpoints of all the sets of suggestions for phase r at earlier points of a.
The next lemma is the key for proving that the algorithm is wait-free. It will be used later,
in Corollary 3.7, to show that the range of suggestions decreases by a constant factor with
each phase. Intuitively, it states that any suggestion for phase r must be in the range of the
midpoints of all the sets of suggestions for phase r - 1 at earlier points in the execution.

Lemma 3.3 For any finite execution a and phase r > 2, range(SO [r]) g range(mids(a, r- 1)).

Proof: By induction on the length of the execution. The basis holds vacuously.

For the inductive step, the interesting case is when a ends with updater(x), for some i,
where z = SiO[r]. Then scan "-1 appears in a. Let a' be the shortest prefix of a that includes
scan - . Note that a' is a proper prefix of a.

Let r' be the largest phase number read in scanr - . Since process pi reads its own sequence,
r' > r - 1. If r' = r - 1, then the code implies that z is the midpoint of S*'[r - 1], which
suffices. If r' > r then, by the code, z = mid(Sa'[r]). By the induction hypothesis on a',
range(S"'[rJ) C range(mids(a', r - 1)). Thus,

x = mid(S*'[r]) E range(S*'[r]) 9 range(mids(a', r - 1)) g range(mids(a, r - 1)),

as needed.

Since range(mids(a, r - 1)) _ range(Sa[r - 1]), we have:

Corollary 3.4 For any finite execution a and phase r > 2, range(SO[r]) _ range(SO[r - 1]).

For the rest of the proof, we fix some infinite execution 0 of the algorithm. The following
lemmas are stated with respect to 6. The following is a corollary of Lemma 3.3.

Corollary 3.5 For any phase r > 2, range(SP[r]) g range(rmids(fl, r - 1)).

The next lemma states that the diameter of all the possible midpoints of the suggestions
in phase r is at most half the diameter of all the suggestions for phase r.

Lemma 3.6 For any phase r > 1, diam(mids(fl,r)) _ j diam(SP[r]).

Proof: If mids(0, r) is empty then diam(mids(, r)) = 0 and the claim follows immediately,

so assume that mids(fl, r) is nonempty. Let a' and a" be two prefixes of 0 such that Sa'[r]
and SO"[r] are nonempty. It suffices to show that Imid(Sa"[r]) - mid(S*'[r]) < 1 diam(S/'[r]).
Without loss of generality, suppose a" is a prefix of a'. By Lemma 3.2, S°"[r] _ S'[r] C
SO[r]. Suppose first that mid(Sa'frl) (mid(Sa"[r]). Thus, mid(S"'[r]) :5 mid(S*"r]) _<
max(Sa"[rJ) < max(S*'[r]). Hence

Imid(SO"[r]) - mid(S*'[rJ) < 2diam(S0'[r]) < 2diam(SONr]),

as needed. A symmetric argument applies if mid(SO"[r]) > mid(SO'[r]). U

9

The following lemma guarantees that suggestions will become closer with each phase; it

will be used together with Lemma 3.9 to ensure wait-freedom.

Lemma 3.7 For any phase r > 2, diam(S%[r]) < diam(SO[r - 1])

Proof: By Corollary 3.5, range(SO[r]) _ range(mids(, r - 1)). Thus,

diam(S/'fr]) !_ diam(mids(,r- 1))
< .diam(SO[r-1]) by Lemma 3.6.

Lemma 3.8 If some process returns z in phase r and y E SO[r], then y E n.(x).

Proof: Assume pi returns z in phase r, and assume, by way of contradiction, that there exist
processes with suggestions for phase r that are not in nh(z). Let pj be one of these processes
with the property that scan - 1 is the earliest among scan' - ' of these processes; let a be the

shortest prefix of # that includes scan - 1. Let y = S"[r]; by assumption, y 0 n[zi.

By the way pj was chosen, there is no update:,(yI), with y' V n.(z) in a; thus, rune(SO[r]) C
n[Z]. Let r' be the maximum phase number read in war-1. It must be that r' < r- 1, since
otherwise, pj would have set its suggestion for phase r to be in n,(z). Since proces pi reads
its own sequence, r' = r - 1.

The fact that r' = r- 1 also implies that scan7- precedes update!(z). Let a' be the shortest

prefix of P that includes scan'. Since update'(z) precedes scanr, it folows that scanr- precedes
scan, i.e., a is a prefix of a'.

Since process pi returns in phase r, it follows from the code that range(Sc'[r - 1]) C nd[z].
Since r - 1 is the maximum phase number read in scanr-, it follows that y = mid(S[r - 1]) E

range(S"[r - 1)). However, by Lemma 3.2, SO[r - 1] g S'[r - 1), and thus p E n(z), a
contradiction. a

Lemma 3.9 For any phase r > 1, if diam(S('[r]) 6 r, then every nonfiauLty process returns
no later than phase r + 1.

Proof: From the code of the algorithm it follows that every nonfaulty process either returns
or reaches phase r+l. If diam(S[r]) < e it follows from Corollary 3.4 that diam(S[r+ 1]) < e.

The proof proceeds by induction on the order in which processes perform scanr+1 . For the
base case, let pi be the first process to perform scan' + '. Clearly, pi has phaei = r + 1 =
max-phase, and by assumption r + I _ 2. Also, diam(SO(r]) and diam(S#(r + 11) are less than
or equal to e, and thus, pi will pass the test in Line 5 and wil return in phase r + 1. The
induction step is similar, and uses the fact that so far no process has advanced beyond phase
r + 1 to show that any process that reaches phase r + 1 passes the test in Line 5 and returns
in phase r + 1.

10

Thus we have proved:

Theorem 3.10 Procedure wait-free-approx is a wait-free algorithm for the approximate agree-
ment problem whose running time on input (Xo,... ,xn-) is at most

O(n2 log(diam('xo,. -)

Proof: The validity condition clearly holds, since processes decide only on their suggestions
and these are always within the range of the inputs (Corollary 3.4).

To show agreement, assume that r is the minimum phase in which some process returns, and
let pi be a processes that returns z in phase r. By Lemma 3.8, the suggestions of all processes
for phase r are in n1(x). By Corollary 3.4, the same is true for phase r + 1. By Lemma 3.9, all
nonfaulty processes return no later than phase r + 1, and thus, all nonfaulty processes return
either in phase r or in phase r + 1. Since processes return only their suggestions, all returned
values are in n,(z), as needed.

Since the diameter of suggestions decreases by a factor of two with each phase (by Lemma 3.7)
it will eventually be smaller than e and, by Lemma 3.9, each process will eventually decide.
This guarantees wait-freedom.

To show the time bound, notice that, by Lemma 3.7, after 0(log(i"m("s,""411)) phies,
processes will have very close suggestions; by Lemma 3.9, all processes will return. The time
it takes a process to execute each phase is bounded from above by the number of operations it
executes. Using the implementation of atomic snapshots from [1], this is bounded by 0(n 2). 0

Since the input range is not bounded and e may be arbitrarily small, the running time
of the algorithm as a function of n is actually unbounded. Note that the time complexity
in the execution where processes operate synchronously starting with inputs (z,... , z,,-) is
fl(n log(d'M{(IxI''""-' 11)).7

4 The Bias Function

The algorithms in Sections 5 and 6 return a decision value by performing a calculation based
on an input value and a corresponding counter for each process. We name the calculated
function bias, as the returned decision value is biased towards (i.e. is closer to) the input value
associated with the process having the largest corresponding counter. Before presenting the
algorithms, we present the function and explain its properties. The proofs of these properties

'The discrepency between this bound and the bound in the theorem is due to the fact that tighter bounds

have not been proven for the time to execute operations in the implementation of atomic snapshot objects of
'1].

11

function bias (v°,v1 ,c°,c 1,E);
begin

1: ifv ° = V1 = 0 then return 0
2: else if co < c' then return vI + V (1v11- minVcOe, IVI1)
3: else return V0 + Wl- mince, lv0l)

fi;

end;

Figure 3: The bias function-Code for process pi.

are purely arithmetic, involving no arguments about synchronization between processes, and
have therefore been deferred to Section 9.

In order to understand the nature of the calculation performed by the bias function, we
briefly explain the structure of the algorithms using it. The new algorithms are conceptually
based on the following high-level two-process algorithm. A process P (similarly p0), knowing
only its own input value v1, will repeatedly take incremental steps of size e, starting at 0 and
ending upon reaching the value v i , unless it reads that the other process po has also moved.
In the former case it decides on vi, and in the latter case its decision value is a function of the
relative number of incremental steps both processes managed to take before each noticed the
other had moved. However, since in either case process pi's decision must be guaranteed to be
in range({tu, v)), it cannot just be a value in the interval range({O,v 1}). This is the exact
purpose of the function bias. It provides a mapping from the processes' incremental walks in
the intervals range({0, v°}) and range({0, 01}) respectively, to walks of proportional length
in the allowed range({ °v, v1}). The code of bias appears in Figure 3. The function takes as
inputs two real number values v° and v1, two associated counters, co and cl (integers denoting
the number of incremental steps each process pa or pi took), and e.

An example of the translation defined by bias is given in Figure 4 for the case 0 < v° < V 1 .
Assume pa traversed a distance of length co . e away from 0 towards v° , and P, a distance
of length c' e away from 0 towards v1. The bias function maps the respective distances of
length cO .e and c .e (within the interval [- v, v1]), into distances of proportional length in the
interval [t0 , v1]. The starting point 0 in [-vO, v1], is replaced by the point new-O in [v° , v1]. The
returned decision value is then the point associated with the larger counter (larger traversed
distance).

We now introduce several lemmas that formally outline the properties of the bias function
and on which the correctness proofs of the algorithms in the sequel will be based. The first is a
rather simple statement, namely, that the returned value of any call to bias is in range({vO, v)).

Lemma 4.1 Let c° , c1 be nonnegative integers, and v° , 0 , e be real numbers, with e > 0. Then
bi.s(v° , v1, cO, cl , e) E range({v ° , v)).

12

0 v 0 Input interval I

I I

-V 0 VI
II I I I

\ / -

\ /

/ Bias mapping

A- Ole

V 0 new- 0 V

returned value

Figure 4: The bias mapping.

The next three lemmas have to do with an additional property required of the bias finction:
that the values returned by different calls to bias always be approximately the same, even
if the counter parameter values or the real parameter values used in these calls, are slightly
different. The following first lemma states that applying bias to counters co and c' that are
only approximately the same, yet with exactly the same real numbers vu, v1 and e, results in
returned values that are approximately the same.

Lemma 4.2 Let c°, cl be nonnegative integers, and v°, v, e, m be real numbers, e > 0, m > 0.
(1) Suppose c' > c0 and 101/e - m 5 cl. Then Ibias(v, v, c,c",E) - v11 __ me.
(2) Suppose c° >_ c' and Ivl/e - m < c0 . Then Ibias(v°,v 1,c, c,C) - Vol < me.

The next lemma shows that the results of two calls to bias with "close" (in a sense made
precise by the lemma) values for c0, c, and the same v°, V1,e, are "close".
Lemma 4.3 Let 4,4, c , cl be nonnegative integers, and v°, 01, e, m be real numbers, e > 0

and m >O. Suppose min{, e} = min{ c,c'} = 0 and I -cO1 + 14 - 5l _m m. Then

Ibias(V, ,1, S, C!, e) - bias(v, v1, c , cl, e)l 5 me.

The last lemma in the section states that applying bias, this time to real numbers v° and
v1 that are approximately (to within a 6 factor) the same, yet with exactly the same coluteg
c0 , c and e, results in values that are approximately the same.

13

Lemma 4.4 Let c0, c1 be nonnegative integers, and qo, v, v4, vI, , 6 be real numbers, with
e > o, 6 > o. Suppose Itvo- ? 1!< 6 and Ito - t4 1 6. Then

I bia(vo, vo', co, c', e) - bia(v 0, v1, c°, cl, E)1 66.

5 Fast 2-Process Approximate Agreement

We now show that, for two processes, there exists an approximate agreement algorithm whose
time complexity is constant; i.e., it does not depend on the range of input values or e. The
n-process algorithm presented in Section 6, when specialized to the case n = 2, also yields a
(somewhat larger) constant time complexity. We present this algorithm because we believe its
simplicity will help the reader develop an intuition for the ideas that will be later used in the
general algorithm.

5.1 Informal Description

The key ideas underlying this algorithm are as follows. A process, pi, running on its own,
can assume that either it is running very fast (and not much time has elapsed), or the other
process, Pr, has failed. Thus, p, may take an unlimited number of steps without degrading
the time complexity for failure-free executions, as long as pr does not perform any stps. Of
course, if pr does not take any steps at all, then, in order to guarantee the wait-fr property,
pi must eventually decide (unilaterally) on its own value. In this -cae, in order to guarantee
correctness, it is necessary that if and when pr does appear, it must be able to know, just by
reading pi's registers, what pi has decided. However, an inherent difficulty of . -r . r
asynchronous systems is that, due to the uncertainty of interleaving, at least one process p
has an "uncertainty of one step," namely, it cannot tell whether Pr read the value written in
pi's latest write or the value written in pi's preceding write. A two-process solution that halves
the distance between the suggested values is thus of no use, since the "uncertainty of one step"
can cause processes do decide on values that are more that e apart. Our solution is to have
a process change its suggestions gradually with each step, more precisely, by an amount less
than e, so that the "uncertainty of one step" will result only in e inaccuracy in the decision
value.

5.2 The Algorithm

The code for process pi is given in Figure 5. Each process pi, i E {0, 1} maintains a single-
writer multi-reader atomic register with two fields: Vi-the input value, a real number, and
C,--the counter, an integer. Each process starts by writing its input and initializing a counter
in the shared memory (Line 1 in incvams-counter). It then keeps incrementing this counter
until either it has taken a number of steps proportional to the absolute value of its input, or
the other process has taken a step, whichever happens first (Line 2 of ctcese-counter). When

14

function fast-2-approx (z, e);
1: increase-counter(z,)
2: (v°,v 1 ,c°,c1) := (Vo, V,Co,Cl);
3: if c' = I then return vi
4: else return bias (v0 , V1, co, c1 , 6);

end;

function increase-counter (v, max);
1: (Vi,C,) := (v,O) ;
2: while Cr= . and Ci < maz do C := Ci + 1 od;

end;

Figure 5: Fast wait-free 2-process approximate agreement-Code for process pi.

the process stops, it collects all the C and V values and applies the function bias to get a
decision value. As described in the former section, the decision is within the input range and
biased towards the input value of the process with the larger counter. In particular, if a process
runs to completion without observing the other process, it decides on its own input value. We
show that the discrepancy in the reading of the counters among the two processes is at most
1, and thus, based on the properties of the bias function, the decisions based on the values of
the counter will differ by at most E.

5.3 Correctness Proof

An execution of the algorithm can be viewed as a sequence of primitive atomic operations that
are reads and writes of atomic registers (and may include changing local data). Fix some
execution a of the algorithm. All lemmas in the rest of this section are stated with respect
to a. The next lemma shows a crucial property of the values of the counters used by the two
processes. In this lemma .L is treated as -1.

Lemma 5.1 Asume po and p1 return from fast-2-approx. Let i E {0, 1}, and let c, and cr be
the values of C read by pi and pr, respectively, in Line 2 of fast-2-approx. Then, ci -1 < cr _ ci .

Proof: Since pi returns, it must be that p, writes to C,. Let iri be the last write by pi to C
in a. Since increase-counter returns after the last write to Ci and pi is the only one to modify
C,, it follows that ci is the value written to Ci in vi. Let Of be the read by Pr of Ci in Lie 2
of fast-2-approx. Note that cr is the value returned in Of. Since C is atomic, it is clear that
cr < c. We now show that ci - 1 c Cr.

If ci = 0 then since Cr <_ ci, Cr E {.L,0}; since .I is mapped to -1, the claim follows. So
assume ci > 0. Let r be the penultimate write by pi to Ci, writing ci - 1. Let Oi be the latest

15

read of Cr by pi that precedes ri; note that 7r! precedes 0,. It must be that the value read in
is .. Let rr be the write of 0 by pr to Cr in a. From the code, it follows that wr precedes or.

Since the value read in 4, is .- , it follows from the atomicity of Cr, that 4. precedes rr. Thus,
vr precedes Or. From the atomicity of C, it follows that c - 1 < c-.

We can now prove that the algorithm satisfies the agreement property:

Lemma 5.2 If fast-2-approx0 returns yo and fast-2-approx, returns if then Iyo - V, 1_ e.

Proof: The proof of this lemma is separated into two cases. In one case, we apply Lemma 4.2.
In the other case, we show that the sum of the differences between the values of co aad cl used
by Po and by P, is at most 1, and appeal to Lemma 4.3. The details follow.

Denote by 7r the first write by pi to Ci, writing 0, for i E {0, 1}. Since both processes
decide, both ro and r, must appear in a. Assume, without loss of generality, that to precedes
rl. (The other case is symmetric.) Assume that process po reads (vS, 4, c, cj) in Line 2 before
deciding, and that process Pi reads (v1, 4l,cl) in Line 2 before deciding. Note that, since
pi first writes 0 to C, and then reads Ci, it must be that c 'a 0, for i E {0, 1}.

Let 4, be any read of Co by pi, returning some value z. The code of the algorithm implies
that rl precedes 4,. Since w0 precedes ri, w0 precedes 4'. By the atomicity of Co, this implies
that z > 0. This implies, in particular that 4 2! 0, and thus, fast-2-approx, returns in Line 4.
In addition, this also implies that ph will not increase C1 beyond 0, and thus, by the atomicity
of C 1, ci = 0 and c {.L,0}. We separate the rest of the proof into two cases:

Cas 1: c = .L. In this case, fast-2-approxo returns vo = to in Line 3. The code of inceuse-
counter implies that Jzoj/e 5 < . Lemma 5.1 implies that Izo/e - 1 5 c?. Also, v0 = zo. Since
c 2! 0 = c4, we can apply Lemma 4.2(2) with m = l and get that lbias(v? , 1, O, cl, r)- v01 _5 e,
as needed.

Case 2: c4 = 0. Then fat-2-approx0 returns in Line 4 and v = z4. We have that min{4c,} =

- = 0 ad min{c,} = c = 0. Also, Je - 4j + Jc - c1 = 14- 1j < 1, by Lemma 5.1. The
claim follows by applying Lemma 4.3 with m = 1.

We have:

Theorem 5.3 Procedure fast-2-approx is a wait-free algorithm for the 2-proceu approzimate
agreement problem whose time complezity is 0(1).

Proof: Agreement follows from Lemma 5.2. It follows from the code and from Lemma 4.1
that the values returned are in the range of the original input values; hence the validity
property is satisfied. Each process pi executes at most O(Izsi/e) steps before deciding; thus,
the algorithm is walt-free. Since each process executes a constant number of (its own) steps
after the other process performs its first step, the time complexity of this algorithm is 0(l). a

16

6 Fast n-Process Approximate Agreement

In this section, we present a fast (O(log n) time) wait-free approximate agreement algorithm
for n processes. The algorithm is based on an alternated-interleaving method of integrating
wait-free (resilient but slow) and non-wait-free (fast but not resilient) algorithms to obtain new
algorithms that are both resilent and fast.

We begin by showing how one can reduce, in constant time, the problem of n-process
approximate agreement with arbitrary input values to a special case of the problem where the
set of input values is included in the union of two small intervals. We do this by performing
an alternated-interleaving of a wait-free and a non-wait-free algorithm. We then show, again
based an alternated-interleaving of wait-free and non-wait-free algorithms, that n processes
with values in two small intervals can "simulate," in O(log n) time, two virtual processes
running the fast approximate agreement algorithm of Section 5, thus solving the approximate
agreement problem for n processes and any two values. Combining the two algorithms yields
an O(log n) wait-free approximate agreement algorithm.

The second part of the algorithm relies on procedures for synchronization and input col-
lection with O(log n) time complexity. These procedures are presented in Section 6.3.

6.1 Informal Description

The first part of the algorithm-the one that achieves the constant-time reduction $o two sMall
intervals, is encapsulated in procedure n-to-2 (Figure 6). The idea is simple: interleave the
execution of the slow wait-free-apprsc procedure with that of the fast wait-approx. The resulting
algorithm is wait-free since even if n - 1 processes fail, wait-free-approx will terminate. It takes
at most 0(1) time in the failure-free execution since wait-approx terminates within 0(1) time.
However, some processes (group a) might finish the alternated execution with a value from
wait-approx, while others (group b) finish with a value from wait-free-approx. We thus did not
solve the approximate agreement problem, but we did guarantee that the values are included
in the union of two small intervals. The procedure returns an output value vi and a group
g, E {a, b) to which pi is said to belong. It is guaranteed that output values for processes in
the same group gi E {a, b) are at most e/12 apart.

The second part of the algorithm solves n-process approximate agreement in O(log n) time,
assuming that processes are partitioned into two groups with approximately the same value in
each group. The solution is based on having the processes in group a (resp. b) jointly simulate
a virtual process Po (resp. pl) that execute the function fast-2-approx of Figure 5.

The following straightforward simulation is expressed by Lines 1-2 of the function increase
counter in Figure 6. The counter Co of fast-2-approx is replaced by a joint counter, which is
defined to be the sum of local counters Ci, for all i in group a. Each step of the simulated
counter Co is implemented by O(n) steps of the joint counter for a. Each step of this joist
counter is, in turn, implemented by a single step of one of the individual counters in group a.

17

Similarly, the processes in group b simulate counter C, of fast-2-approx. In Line 2 of increase-
counter, in order to decide on the values of the joint counters of a and b, a process reads the
values of all local counters. If the counter simulated by pi's group is not large enough and the
counter simulated by the other group is 1, then pi advances the counter simulated by its group
(by incrementing its local counter Ci), and repeats. Otherwise, pi exits increass-counter.

One can see that, in an execution where processes operate synchronously, each iteration of
the while loop in Line 2 of increase-counter has 0(n) time complexity since reading all memory
locations to calculate the simulated counter takes 0(n) steps. However, one can improve the
time complexity based on the following observation. If pi ever detects that all processes have
set their counters (in Line I of increase-counter), then it knows that one of the following holds:
either some process from the other group has set its local counter (and hence that group's
simulated counter), to a value other than .. , or the other group is empty. In the former case,
the loop predicate in Line 2 must be true, while in the latter case, the final value for the
other group's counter will be -i. In either case, pi can stop executing increase-counter, and be
guaranteed to correctly simulate the behavior of the 2-process algorithm. In order to detect
in less than 0(n) time that all processes have set their counters, we use an 0(log-n) non-wait-
free synch procedure, described in Section 6.3, whose termination ensures this condition. To
achieve the better time, the algorithm alternates synch with the (wait-free) loop in Line 2 of
increase-counter.

The delicate synchronization provided by synch and its effect on the rest of the algorithm
guarantee that after some process exits increase-counter, individual counter values increase at
most by 3. Thus, after exiting increase-counter, a process can perform an 0(logn) wait-free
fast-collect, described in Section 6.3, in order to collect all the values needed to decide on the
returned value in Lines 3-4. The above property ensures that the simulated counter values
used by different processes do not differ much.

6.2 The Algorithm

The code for the algorithm is presented in Figure 6. Alternated procedurm are enclosed
within begin-alternate and end-alternate brackets. This construct mesas that the algo-
rithtn alternates strictly between executing single steps of the two alternated procedures, and
terminates the first time one of the procedures terminates. s When an alternation is used in
an assignment statement, the value assigned is the value returned by the procedure that ter-
minates first. The algorithm uses the bias procedure of Figure 3. In addition to the shared
data structures used by wait-free-approx and wait-apprx, process pi, i 6 {0,..., n - 1), has
a single-writer multi-reader atomic register with the following fields: V,-the value returned
in pi's first phase; G,-denoting the group to which pi belongs; C-pj's contribution to its
group's counter; T,-p's boolean synch termination flag.

$We remark tat this is just a coding convenience, used to Ap* the control stuctur of the algorithm.
It is impemuented locally at one proces and does not cause spawni of new procems.

18

In the code we abuse notation and denote by V9, where g is a group's name, the "group's
value" calculated as follows: if g = gi then it is V, and if g # gi then it is an arbitrary Vi such
that pi is in group g if there is any, and ., otherwise. The value v9 is calculated in a similar
manner from the corresponding local copies. (Recall our convention that lower case letters
stand for local variables and upper case letters for shared variables.) When g is a group name,
§ denotes the other group's name, e.g., if g a then # = b. The notation C 9, for g E {a,b},
stands for the sum of those Ci such that Gi - g and Ci 6 1, if there is any such Ci, and I,
otherwise. The value c9 is calculated in a similar manner from the corresponding local copies.

6.3 Fast Information Collection and Synchronization

We now present the procedures for information collection and synchronization and prove their
properties. We start with a wait-free algorithm for input collection-returnng the current
values in the entries of an array R. The time complexity of the algorithm is O(log n).

This problem is interesting on its own as it underlies any problem of computing a function,
e.g., max or sum, on a set of initial values that reside in the shared memory.9 Once a process
collects all the values, computing the function can be done locally in constant time. Since
fl(logn) is a lower bound on the time for the information collection problem (see, e.g., [11]),
this implies that for problems whose output depends on all the initial values in memory, and
only on them, there exists an optimally fast walt-free solution.

Our algorithm, presented in Figure 7, is a walt-free variation of the pointer-jumping tech-
nique used in PRAM algorithms (e.g., [49]). For sequences R, R' and a nonnegative integer n
we define concatenate (R, R ') as returning the concatenation of R' to R, and truncate(R, n) as
returning the first n elements of R if IRI > n, and R, otherwise. The initial value I is treated
like any other value and may be returned by the algorithm for entries that have not yet been
set.

Fix some execution a of fast-n-approx algorithm. We clearly have:

Theorem 6.1 Assume fast-collecti is invoked by pi in a, and let a' be the shortest prefix of
a that includes an invocation of fast-collect. Then fast-collect, returns a vector containing, for
each pj, a value that appears in Rj at some point at or after a'. Moreover, fast-collect, returns
within at most 2n steps by Pi

The next lemma is the crux of the time analysis for this algorithm.

Let t be the time of the last event in the shortest finite prefix of a that includes an invocation
of fast-collect by every Pi, i E {0,... , n - 1}, if such a prefix exists, co otherwise.

'Note that these problems are very different from the decision problem, considered until now in this paper,
where inputs are local to the processes and do not reside in the shared memory.

19

function fast-n-approx (z, 6);
begin

0: (v,g) := n-to-2 (z,e);

1: increase-ounter(, g,)

2: (6, 1, : = fast-collect (V,G,C);
3: if cl = I then return v9

4: else return bias(v vb,ce,cbe/6n);
end;

function n-to-2 (z, r);
begin

(v,g) := begin-alternate

1: (wait-free-approx (z, e/ 12), a)
and

2: (wait-approx(z), b);
end.alternate;

3: return (v, g)

end;

function increase-counter (v, g, n=w);

begin
1: (V, G,C) := (v,g,0);

begin-alternate
2: while C = ±and CO < mazdo Ci :C + 1 od;

and

3: synch (C);
end-alternate;

4: T := true;
end;

Figure 6: Fast wait-free n-process approximate agreement-Code for process pi.

20

function fast-collect (R);
begin

1: 1 :- 1;
2: while I < n do
3: Ri := concatenate (Ri, R(+O mod n);
4: 1:= IRI;

od;
5: return truncate(Ri, n);

end;

Figure 7: Fast wait-free information collection-Code for process pi.

Lemma 6.2 Assume t < oo. For every i E {0,..., n- 1} and every integer r, 0 < r < [log n],
iRIi > min{21, n} at time t + 2r.

Proof: The proof is by induction on r. The base case, r = 0, is trivial.

For the induction step, assume that r > 1. If at time t + 2(r - 1), IRI _> n, the claim
follows. So suppose, IRiI < n at time t + 2(r - 1). Then process pi reads R(i+l.) modn after
time t + 2(r - 1), where Li is the length of Ri at time t + 2(r - 1). By the inductive hypothesis,
IRiI > 21- 1 and IR(i+1j)modnl _ 21- 1, at time t + 2(r - 1). It follows that)Ri) > 27 at time
t+2r. 0

In particular, at time t + 2[log n], we have IRjI > n for every i. Thus, fast-collecti returns
by time t + 2 log n]. We have:

Theorem 6.3 Let a' be a finite prefix of a. Assume that in a', fast-collecti is invoked by pi,
for every i E {0,..., n - 1}. Then for every i E {0,..., n - 1}, fast-collecti returns within at
most O(log n) time after o'.

The synchronization procedure, synch, is a variant of fast-collect. Since it is used within
an alternate construct, it is possible that synch is aborted without completing and returning
"normally." To cope with this possibility, we associate with the shared array R to which synch
is applied, a special termination array T, whose entries can take on values {.1, true}. Tj is set
to true if pj terminates, i.e., aborts or returns from synch1 . The synchronization proce4ure
guarantees that if it returns, then either all the entries of the array are non-i, values, or for
some j, T = true. It is not wait-free. The code appears in Figure 8.

Again, we fix some execution a of fast-n-approx. We have:

21

procedure synch(R);
begin

1: repeat until Ri # 1; /* wait */
2: !:= 1;
3: while I < n and Ti+l modn - . do
4: repeat until Ri+Lmodn I; / wait */
5. Ri : = concatenate (Ri, R(j+l) modn);

6: 1:= IRI;
od;

end;

Figure 8: Fast non-wait-free synchronization-Code for process pi.

Theorem 6.4 Let a' be a finite prefix of a. Assume that in a' all R entries are set to values
J6., and that synch, is invoked by pi. Then synch, returns within at most 3n steps by pi after

the end of oi .

Theorem 6.5 Let a' be a finite prefix of a. Assume that in a', synch, returns, for some pi.
Then at the end of o' either all R entries are 6 1 or Tj = true for some j.

Let a' be a finite prefix of a. Note that, in fast-n-approx, if pi terminates synchi, i.e., aborts
or returns, then within one time unit, Ti = true. This is crucial in the proof of the next
theorem.

Theorem 6.6 Let a' be a finite prefix of a. Assume that in a' all R entries are set to values
.1, and synch, is invoked by pi, for every i E {0,..., n - 1}. Then every process terminates

synch within at most O(log n) time after the end of a'.

Proof: Let t be the time of the last event of a'. We prove that for every process pi and
for every integer r, 0 _< r 5 2riognI, by time t + 3r, either pi terminates synch, or IRI 2!
min{2Lr/ 2J,n}. The claim follows by taking r = 2fRog nl and noticing that if I R, 1 n, then pi
returns from synchi within 0(1) time.

The proof is by induction on r. The base cases, r = 0,1, are trivial.

For the induction step, assume that 1 < r < 2 Flog nl. If pi terminates by time t + 3r,
then the claim is immediate. So, assume pi does not terminate by time t + 3r. In par-
ticular, it does not terminate by time t + 3(r - 1). Hence, by the induction hypothesis,
IRi _ min{2[(r-)/ 2j, n} = 2L(r-i)/2J. Then process pi reads T(i+u)odn after time t+3(r- 1),
where i is the length of R, at time t + 3(r - 1).

22

If P(i+,) mod n terminates by time t + 3(r - 1) - 1, then, by assumption, T(i+l) mod n = true
by time t + 3(r - 1) and thus, pi terminates by time t + 3r. It follows from the induction
hypothesis for r - 2 that IR(i+l,)modnl > 2L(r-2)/2J. Then the length of Ri at time t + 3r is
larger than or equal to 2t(r-)/2J + 2(r-2)/2J > 21+L(r-2)/2J = 2Lr/2j.

6.4 Correctness Proof

We remind the reader that an execution of the algorithm is viewed as a sequence of primitive
atomic operations that are reads and writes of atomic registers. We now fix some execution a
of fast-n-approx.

As in the proof of the 2-process algorithm (Section 5), the crucial point in the proof of the
algorithm is showing that, in Lines 3-4 of fast-n-approx, processes use "close" values for ca and
cb. We show that the value of an arbitrary counter when some process invokes fast-collect are
at most 3 less than the maximal value this counter ever attains. This is formalized and proved
in the next lemma:

Lemma 6.7 Assume that pi invokes fast - collect, in a. Fix some process pi; let k be the
value of Cj returned by fast-collecti. Let k' be the maximum value written to C, in a. Then
k'-3 < k< W'.

Proof: The inequality k < k' follows immediatdy from the atomicity of the shared register.
To prove the other inequality, let pi, be the first process to execute the write operation in
Line 4 of increase-counter. Such a process exists because pi performs this write operation
before invoking fast-collecti. Let a' be a shortest prefix of a that includes pi,'s write to Ti,.
Let k" be the value of C, at the end of a'. Since any invocation of fast-collect follows this last
write operation in Line 4, Theorem 6.1 and the atomicity of Cj implies that k" < k. Thus,
it suffices to show that k' - 3 < k". There are two cases according to the way pi exits the
alternate construct in Lines 2-3 of increase-counter:

Case 1: pi, exits the while loop. It must be that one of the halting conditions of the while
loop is false for pi,. If pi, and pj are in the same group, i.e., g9, = gj, then pj will perform
at most one iteration of the while loop before pj also sees the corresponding condition to be
false. If pi, and pj are not in the same group, i.e., gi, 9 gj, then pj will perform at most one
iteration of the while loop before pi sees the first condition to be false (by observing Ci, # .1.).
The claim follows.

Case 2: pi, returns from synch,. It follows that for all processes, Tj = .I when pi termiuates
synch i. It follows from Theorem 6.5 that, for all I E {0,..., n - 1}, the value of C1 at the
end of a' is 0 .1. By Theorem 6.4, pj will exit synchj(C) after performing at most 3n of its
own steps after a'. It follows from the definition of alternate that pj will perform at most 3n
steps in the while loop in Line 2 of increase-counter, before synchj(C) terminates. However,
each iteration of the while loop takes at least n steps (since n registers have to be read).

23

Thus, pi will perform at most three additional iterations of the while loop, before synchi(C)
terminates. The claim follows. M

Tisa implies that, for each local counter, the values read by two different processes differ
at most by 3. Hence, the values used by different processes for the joint counters c" and cb
differ at most by 3n. Formally, we have:

Lemma 6.8 Suppose i,j E {0,...,n - 1} and g E {a,b}. Assume the values returned by

fast-collecti and fast-collectj calculate to c! and ci, respectively. Then Icif - c, < 3n.

We can now prove that the algorithm satisfies the agreement property:

Lemma 6.9 If fast-appro; returns yi and fast-approxj returns yj, then 134 - yji - e.

Proof: The general outline of the proof parallels that of Lemma 5.2; however, some of the
details are different. First, the discrepancy between processes' view of the joint counters might
be 3n; to compensate for that, we use bias with e/6n. In addition, we must allow for the
possibility of using different values from the same group (by applying Lemma 4.4). The details
follow.

We present the proof for the case where pi and pj are not in the same group, without loss
of generality, assume g, = a and gj = b. The proof for the case where pi and pi are in the same
group follows from similar arguments and is left to the reader.

Assume that the values computed by pi based on fast-collecti to be used in Lines 3-4 of
fast-n-approx are (v?, vib, C ,); similarly, assume that the values computed by pj based on
fast-collectj to be used in Lines 3-4 of fast-n-approx are (v7, vb, c,,). Note that since pi is in
group a, ? 0 and vi .; similarly, since pi is in group b, c6 > 0 and and vj $.

For any process pk, denote by Vr the write by process Pk in Line 1 of increase-counter (if it
appears in a). Since pi and pj decide, ri and rj must appear in a. Let pi, be such that wi,
is the first irk in a. Assume, without loss of generality, that pi, is in group a. Intuitively, we
assume that the first process to start the second phase of the algorithm belongs to pi's group,
a.

The code of the algorithm implies that ir, precedes any calculation of C4 by pj, for any
pj, in group b. Since iri, precedes ir3, it follows that pp will always calculate C # .L. Thus,
c.9 _ 0 and hence fast-n-spproxj returns in Line 4 and 7 j .1. Also, the above implies that C6
never increases beyond 0. Thus, ci = 0 and c4 E {J., 0). We separate the rest of the proof into
two cases:

Case 1: c! = I. Then fast-n-approxi returns vf in Line 3. From the code it follows that
C? 2 Iv?16n/i . By Lemma 6.8, c1> v76n/e - 3n. Since c 2 0 = cb, applying Lemma 4.2 (2)
with m = 3n we get that

Ibias(v", v, c! cO, e/6n) - i < e/2. (1)

24

Also, Theorem 3.1 implies that IvO - v i _< e/12. Applying Lemma 4.4 with 6 = e/12, co =qc

c1 = b, Vo = ,U,, = v, Vl = V v = vb , we get that

Ibias(v',vj,c3, c;,e/6n) - bias(v c!v, , e/6n)l : 6/12 = . (2)

From (1) and (2) it follows that

I b ia s(vja, vb, cj", cb, e / 6n) - vi' J< e ,

as needed.

Case 2: c4b = 0. Thus, fast-n-approN returns in Line 4 and vO ? I. We have that min{cf, 4} =
q4 = 0 and min{c,,c = c-b 0. Also, Ic? - c j + 1c4 - c j = Icq - cial _ 3n by Lemma 6.8.
Applying Lemma 4.3 with m = 3n we get

lbias(v , vb, c9, 8, e/6n) - bias(v4, vb, c , cb, e/6n)l 3n " c/6n = /2 . (3)

Also, Theorems 3.1 and 3.10 imply that Iv9 - v'1 <_ e/12 and Ivb - v4 _ e/12. By applying
Lemma 4.4 with 6 = e/12 we get

I bias(vi", vib , c, 8, c/6n) - bisv* ic,8 /n 56/2 r2.(4)

From (3) and (4) it follows that

Ibias(v?., v4, c9, 8, e/6n) - bias(v', vb, c e/, cb, e/6n) 1 I_ e

as needed.

We have:

Theorem 6.10 Procedure fast-n-approx is a wait-free algorithm for the n-process approximate
agreement problem whose time complexity is O(log n).

Proof: Agreement follows from Lemma 6.9. Validity follows immediately since the values
returned by wait-free-approx and wait-approx are in the range of the original inputs, and the
bias function preserves this property (Lemma 4.1).

The algorithm is walt-free because the first alternative of each alternation construct and
fast-collect are wait-free.

Within 0(1) time all processes finish n-to-2. Thus, within 0(1) time all processes start
procedure increase-counter, write to Ci and invoke synch. By Theorem 6.6, within O(log n) time
each process terminates synch. Thus, within O(log n) time all processes exit increase-counter
and invoke fast-collect. By Theorem 6.3, all processes return from fast-collect within O(log n)
time. Hence, the total time complexity is O(log n). U

25

7 A logn Time Lower Bound

In this section, we show that the log n dependency exhibited by the algorithm of Theorem 6.10 is
inherent: the time complexity of any wait-free algorithm for n-process approximate agreement
is at least log n. Together with Theorem 3.1, this result shows that there are problems for which
wait-free algorithms take more time (by an fl(log n) factor) than non-wait-free algorithms.

In the rest of this section, we assume that each process has only one register to which it
can write. Since the size of registers is not restricted and since only one process may write to
each register, there is no loss of generality in this assumption. Let R, be the register to which
pi writes. For a configuration C and a process pi, let st(pi, C) be the pair consisting of the
local state of pi and the value of Ri in C, i.e., st(p,, C) = (state(p,, C), tal(R, C)).

The synchronized schedule is the schedule in which processes take steps in round-robin
order starting with Po, essentially operating synchronously. The sequence of r rounds in the
round-robin order is denoted a,. For any configuration C, the corresponding synchronized
ezecution from C is uniquely determined by the algorithm. Note that this is a 0-admissible
execution.

We now define the set of processes that could have influenced pi's state at time r in the
synchronized execution from a configuration C. Let C be a configuration; by induction on
r > 0, define the set INF(pi, r, C), for every i E (0,..., n - 1), using the following rules:

1. r = 0: INF(pi, r, C) = {pi), for every i E (0,..., n - 1).

2. r > 1: if pi's rth step in (C, a,) is a read of Rj, then INF(pi, r, C) = INF(p,r - 1,C) U
INF(pj, r - 1, C). If pi's rth step is a write (to Ri) then INF(p,, r, C) = INF(pj, r- 1, C).

The next lemma formalizes the intuition that INF includes all the processes that can influence
p's state up to time r.

Lemma 7.1 Let C1 and C2 be two configurations, let pi be any process and let r > 0. If
st(pj, C) = at(pj, C 2) for all pi E INF(pj, r, CI), then st(pi, Cleo) = st(pi, C2ar).

Proof: The proof is by induction on r. The base case, r = 0, is trivial since in this case,
ao = A, INF(pi, 0, Co) = {p) and the claim follows from the assumptions.

To prove the induction step, assume the claim holds for r - 1. If pi's rth step is a write
then the claim follows immediately from the induction hypothesis since INF(p,, r - 1, C1) -

INF(p,, r, CI).

If pi's rth step is a read from Rj then INF(pj,r - 1,CI) g INF(pi,r, CI). The in-
duction hypothesis implies that st(pj,Clor-_) = .t(pi,C 2o,_). By the same reasoning,
st(p,, Clor-1) = st(pi, Ca-j.). Thus, st(pi, Clar) = st(pi, C2o?), as needed. U

26

We can now prove:

Theorem 7.2 Any wait-free algorithm for the n-process approximate agreement problem has
time complexity at least log n.

Proof: Assume that A is a wait-free approximate agreement algorithm. We prove a slightly
stronger claim: there exists a 0-admissible execution a in which no process decides before
time log n. Suppose, by way of contradiction, that in all 0-admissible executions some process
decides before time log n.

Fix some e < 1. Let a be the infinite synchronized schedule, i.e., the limit of cr. Consider
the execution of A under a from the initial configuration Co where processes start with inputs
(0,... , 0). Let t be the time associated with the first decision event in (Co, a); without loss of
generality, let p0 be the process associated with this event. By assumption, t < log n. By the
validity property, p0 must decide on 0 since all processes start with 0. Note that, by induction
on r, IINF(pi, r, C) 2r, for every configuration C, r _> 0 and i E (0,..., n - 1). Since
t < log n it must be that IINF(po, T, Co) < 2 T < n. Thus, there exists some process that is
not in INF(po, t, Co); without loss of generality, assume P.-i IINF(po, T, Co)1.

Intuitively, to complete the proof, we create an alternative execution in which p,-i "starts
early" with input 1, runs on its own and thus must eventually decide on 1. We then let
the rest of the processes execute as if they are in the synchronized execution from Co and use
Lemma 7.1 to show that process p0 still decides on 0, which is a contradiction to the agreement
property, since e < 1.

More precisely, apply r, an infinite schedule consisting of steps of PN-i only, to the initial
configuration C2 , where processes start with inputs (1,..., 1). The resulting execution (C2,r)
is (n - 1)-admissible, and thus, since A (n - 1)-solves the approximate agreement problem,
and since p,,-i is nonfaulty in r, there exists a finite prefix r' of r in which P,-1 decides. By
validity, p.-I decides on 1. Now apply r' to the initial configuration C, where all processes
but p,,- start with input 0, and pa-1 starts with input 1. By induction on the prefixes of r',
it follows that the st(pN-1 , Cj 1) = at(p.-, C2 r'). Thus pN-1 decides on 1 in Cjr'. Since p.-I
can write only to RP- 1 , it follows that for all processes pj # PN-1, st(pj, Cl r') = st(pj, Co). By
Lemma 7.1, state(po, CvroT) = state(po,COoT). Thus, p0 decides on 0 in C1'r"oT, and P,-i
decides 1, which is a contradiction to agreement, since v <.

8 A Tradeoff Between Work and Time

We now consider the performance of wait-free algorithms when failures occur. A drawback
of the fast algorithms we have presented in this paper is that if a failure does occur, then
the remaining processes will have to take many steps before halting. We show that this
phenomenon is unavoidable. Roughly speaking, we prove that if an algorithm terminates

27

in a small number of steps in executions where failures do occur, then it is slow in normal
executions. In the rest of this section we restrict our attention to the 2 processes case.

Recall that the work performed by an algorithm is define to be the maximum, over all
executions, of the total number of operations performed by all processes before deciding. The
lower bound presented here is slightly stronger-it bounds the number of operations a single
process performs before deciding when runnin on its own. Clearly, this also gives a lower
bound on the work.

Let k 2! 1 be an integer. An algorithm is k-bounded if from any reachable configuration, a
process that executes k consecutive steps on its own must decide. Fix a k-bounded wait-free
algorithm A for approximate agreement; all definitiom sad lemmas in the rest of this section
are with respect to A. For each process pi and a configuratioa C, reachable in an execution
of A, define prefi(C), the preference of pi in C, to be the value on which p decides in the
execution fragment starting from C in which it runs alone until it decides.

A finite schedule is a block if it consists of a positive number of events by p followed by
one event by pl, or vice versa.

Lemma 8.1 Let o be a finite ehedule, and let Co be an int configutin. Let C = Co.
There exits a finite block schedule o such that

Iprefo(Co') - pref>(Co')2 1 Ipmfo(C) - pr•fi(C)I.

Prooi The proof considers the tree of all execution fragments of time 1 from C. A case
analysis, according to the types of steps taken, simil to the one in [33], is ad to show
that it cannot be that all the pairs of preferences associated with leaves of this tree are close
together. The details follow.

Let ro = Ok , i.e., the schedule consisting of k events ofp^. Similarly, let r = 1
k . Let

(C,r o) = C, Cl,..., Ck, and (C, r) = C, C1,..., C ,. For any 1, 1: 1<_ k, denote D, = C11,
i.e., the configuration that results from applying an event of p, to C1. Similarly, for any 1,
1 :5 1 : k, denote Di = Cif. Denote vt = pref0 (Da), Al = pref1 (D,), ,4=pref0 (Djf) and
4j= pref (DII)

Since A is k-bounded, it must be that po decides in Crm; by definition, it must decide on
prefo(C). Similarly, pi decides on pref1 (C) in Cr1 . We show that for all 1, 1 :< 1 < k, either
vo - or Vj = v,1+. There are four caes, depending on the type of operation taken in p0's
step from C1 to C1+ 1 and in pi's step from C1 to DI:

1. po writes and P, writes: commutativity implies that v =- v01+1 .

2. po reads and p, reads: commutativity implies that v6= v +.

3. po writes and p, reads: vol = v4+ 1, since the state of po is the same in DI0 and D1+1.

28

4. po reads and pl writes: vi = tv1+ , since the state of p, is the same in D11 and Di+i.

By symmetric arguments we can show that for all 1, 1 _< 1 < k, either ut = u01+ 1 or ut = u1+1

In a similar manner we show that either vI = ut or vo = ul, by case analysis, depending on
the type of operation taken in po's step from C to C and in p1's step from C to c':

1. po writes and ph writes: commutativity implies that vo = Vlo+1 .

2. po reads and pi reads: commutativity implies that Vto = Vto+l.

3. Po writes and p, reads: tl = vl+ ', since the state of pa is the same in D, and D'.

4. po reads and p1 writes: v = v'+ 1, since the state of pi is the same in D, and Di.

Thus, either there exists some 1 such that IvI - v4I 12 jIpre fo(C) - pre f(C)j, or there exists
some I such that, 14 - ull - *Iprefo(C) - prefl(C)I. In the first case, the claim follows by
taking o' = 01, in the second case, the claim follows by taking a' - 110. 0

Note that the validity condition implies that if pi's input in an initial configuration C is vi
then prefi(C) = vi. Starting with this fact and applying Lemma 8.1 iteratively, we can bound
the rate at which a k-bounded algorithm converges. We get:

Theorem 8.2 Let A be a k-bounded wait-free algorithm for approximate agreement between
2 processes. Then there ezists an execution of A where processes start with inputs (zo, Zi) in
which the time complexity is at least fl(log2k -Lc).

Proof: Let C be an initial configuration in which processes have inputs (zo, zl). We con-

struct, inductively, a scehdule at such that al is a sequence of I blocks and for C' = Car,

lpref0(Cg) - pref>(C)I (prefo(C) - pref•(C)l

This is done by applying Lemma 8.1. We have that time(a,) = 1, since al consists of I blocks.
The validity condition implies that pref,(C) = x,. Thus, Iprefo(C)-pref(C)l = Izo-zil. The
claim follows by noticing that it cannot be that both po and p1 have decided in a configuration
D if jprefo(D) - pr ,(D)i > e. U

Remark 8.1 The case analysis in the proof of Lemma 8.1 can be extended to handle multi-
writer multi-reader registers; thus, the above tradeoff applies also to algorithms that use multi-
writer multi-reader atomic registers.

29

9 Properties of the Bias Function

In this section the interested reader may find the long postponed proofs of Lemma 4.1 through 4.4.

We begin with the rather straightforward proof of Lemma 4.1.

Lemma 4.1 Let c° , c1 be nonnegative integers, and v0 , v1, be real numbers, with e > 0. Then
bias(v ° , vI, c , c', E) E range({v° , v'}).

Proof: Let y - bias(v0 , v, c° , cl , e). The claim is trivial if y is calculated in Line 1. Suppose
y is calculated in Line 2. (The case where y is calculated in Line 3 is symmetric.) Then
y = VI +-I-V1 - (jv1j - min{cle, 1v11}). If the min is attained in the second term, then y - VI

and the claim follows. So assume cle _< v1, so y = vI + tWI (11 - cie). Assume tI1 > v0 .

(A symmetric argument applies when v i <v 0 .) Then v° - vI < 0, and dearly y < v1. Since

I . '(Iv1l - cc)l _< v1 - v0 , it follows that y e v.

The following is the proof of Lemma 4.2.

Lemma 4.2 Let c° , cl be nonnegative integers, and v° , v1, e, m be real numbers, e > 0, m > 0.

(1) Suppose cl > c0 and I v1 /e - m < cl . Then Ibias(v,,vI,c°,cl,e) - v'I < me.

(2) Suppose co 2_ cl and lvOI/e - m < cO. Then Ibias(v°, v1,C°,cl,e) - v0l _< me.

Proof: We present the proof only for.(2), the proof for (1) follows from symmetric arguments.
Let y = bias(v 0 , v1, c°, cl, e). If y is calculated in Line 1 of bias, then y = 0 and v0 = 0 and the
claim follows. Hence, since c > c' it follows that y is calculated in Line 3 of bias, i.e.,

Y~ ~ v = +V-V OV° o min(Coe, lVOl))-= ,o + I-v I

If the min attains its value in the second term then y = v° , and the claim follows. Otherwise,
c°e < 1v01; thus,

ly ~ ~ ~ l - 01=I0+' o O Clot VI} - v~l- two +Ivol + ivfiV l-

-Ivol + 11° - cIeI
IVI- vVol vOl - cOel

Ival + IVII
< ilVOl_ - Ol i Ol_=1 1 €oe: I" ,

by the hypothesis of the lemma.

30

Next is the proof of Lemma 4.3.

Lemma 4.3 Let cOcl, c l, ci be nonnegative integers, and v°, vl , r, m be real numbers, e > 0
and m >_ 0. Suppose min{cS, c = min{c°, c') = 0 and Ic° - clI + 1c4- c' <. m. Then

Ibias(v ° , vi, c , cS, e) - bias(v ° , v , cl , c', e) _< me.

Proof: Let yo = bias(v ° , 0 l , 0 , col , E), and pi = bias(v ° , vl , c° , cl, E).

If v0 = v = 0 then both Yo and yl are calculated in Line 1 of bias, i.e., Yo = / 1 = 0 and
the claim follows.

Now assume yo is calculated in Line 2 of bias, while yN is calculated in Line 3 of bias
(the reverse case is symmetric). Thus, co < c, while 4l < c° . Thus, by assupMptioa, c =

Cl = 0. Since IcS - 1 4 Ica -el _ m, it follows that Icl + jell = + c+ _< m. Thus,
min({c, Iv0l/e) + min,{4, lvl/e} :_ m. So, min{e c, Iti°l) + min(cle, 1vl1} < me. We have

YO "+ I= °+ ,1iiViiO1I - in{*, lvil)) and i = v° + iO - i(Ivol - mn(eoe,lv°l)) .

Thus,

It - 1 = IV + VO-V m(I"l-mn{4,l1})-v'° I1 - V+-I? l -° mincO lVi})l

IVO1 + imnn{e , lii) + min{ce, IvOlI)l

I min(4, vll} + min(cle, lv0 ll f= min(4,lv'l) + min(coe,l vl} _< me,

as needed.

Now assume that both yo and V, are calculated in Line 2 of bias (the case where yo and yi
are calculated in Line 3 of bis is symmetric), i.e.,

Yo = v + I -V l - min(4cl'll) and i = v + -

If for No the min is attained in the second term, then *e 2 Iv1ii, and yo = vl; since l4-cl 5 m
it follows that c > IVI/e -m. Because yi is calculated in Line 2, c? < cl and the claim follows
from Lemma 4.2 (1). A similar argument applies if for V, the min is attained in the second
term. So assume that for both Vo and V the min is attained in the first term. Thus,

Io - YPI = IVi + VI I l - 4) - 1 - _-

IVOI + .-Ivo
l + IVIl)

31

V° - V, (-" c)l

I1 ol + IV1l

< I(cle -)l c -lc ll me
as needed.

In the proof of the next lemma we use the following two facts:

Claim 9.1 Ifx, z', y' are real numbers, and for some 6, Ix - x'I :_ 6 and ly - IfI < 6, then

I I Sj . - I e' < 36*

We prove this claim by first showing that - E] -- 36, using calculus, ii,--;
handling the absolute values by case analysis.

Claim 9.2 Ifx, y, z', y' are real numbers, and for some 6, Ix - z't :_ 6 and ly - YI1 :- 6, then

-- l ~lllzl4I')

We prove this claim by straightforward calculations and a case analysis. Finally, we can
now prove Lemma 4.4.

Lemma 4.4 Let c°, c' be nonnegative integers, and v, vA, V4, t ,, 6 be real numbers, with
e > 0, 6 > 0. Suppose Io - vI < 6 and Ivl -v1 :6. Then

Ibias(o , vo', co, c',e) - bias(o, v, co, ci, e)l < 66.

Proof: Let yo = bias(v8, V,c, cl,e), and y/ = bias(v°,t, c,el,e). If v8 = va = 0 then
= 0. Thus, I v11 _< 6 and IJvJ1 < 6. So from Lemma 4.1 it follows that JiJ < 6 and the claim

follows. The case -
° = =| = 0 follows from symmetric arguments. So assume at least one of

v0, VA is nonzero and similarly for at least one of °, v?'.

Assume that cO < c1, i.e., yo and yi are calculated in Line 2. (The other case, where c' < co

and It and 1 are calculated in Line 3, is symmetric.) Then

o= .+ j- , f4'I' - min{c'e, Ivo1}) and ill= 1 + I I " , 1(1' - min{cl, Iv,11) .

First, assume the min for yo is attained in the second term; then yo = vo. In this case, if
the min for 11 is also attained in the second term, then V, = vj, and the claim follows. On
the other hand, suppose the min for 11 is attained in the first term. Since the min for o is

32

attained in the second term, cie _> IvA 12 lv I1 - 6. Applying Lemma 4.2 (1) with m = 6/e, we
get that Il y - vii 1< 6. Since IVo - vt1 6, we have I yo - vii I 26.

Now assume that in both cases the min is attained in the first term. In particular, cie _< lvii
and cle _ [v1t. We have,

%0 ~ ~ - Vio'
I~o -l = I o %l + 1lv(1,1 ,l I+Iil 1",1 l~o o -Vl1(1l

I<O - IVAo + ,, -+ 1"oI_ + ie)% - cV1) - ',-VzOl + ill(1,1 -C0

vAvi 6 ----i-lvc'e) -,_ -clE) I
I o I + v1 (1 I 11 -i

V8 1I+I V ol 1 1+TvI' l I< 6+1IVO lVol (11-vA) V_ Iv v -Vi) 4'- C1 -v-I1°1 + I1 I ' + Ivl + IvAlI+
vg-vA, V- V1

< 4b+cel I - V v1 - V Ii by Claim 9.1,4 1 + 0 + I Vol I I°1o + I,l' '

26 2
_4b ' mnl,~ 'o + + 2b°1 by Claim 9.2,

461 26 < 4+cle- - < 66.min(IlvAl, lvl) C ce -

10 Discussion and Further Research

For approximate agreement, the answer to the question whether wait-free algorithms are fast
is not binary, rather it is quantitative: we have presented a relatively fast, O(logn) time,
wait-free algorithm for n-process approximate agreement. On the other hand, log n is a lower
bound on the time complexity of any wait-free approximate agreement algorithm, and there
exists an 0(1) time non-wait-free algorithm.

Using the emulators of [5], our algorithms can be translated into algorithms that work
in message-passing systems. The algorithms have the same time complexity (in complete
networks) and are resilient to the failure of a majority of the processes.

There are many ways in which our work can be extended. An interesting direction is to
consider the impact on our results of using other shared memory primitives. For example,
If powerful Read-Modify- Write registers are used, then a constant time wait-free approximate
agreement algorithm can be devised. What happens if multi-writer multi-reader registers are
used? The existence of faster wait-free algorithms using these primitives will imply a lower
bound on the time complexity (in normal executions) of any implementation of multi-write
registers from single-writer registers.

33

Another avenue of research is to see whether the techniques presented in this paper, both
for algorithms and lower bounds, can be applied to other problems. We believe, for example,
that the 0(1) time algorithm for 2-process approximate agreement can be generalized to any
decision problem of size 2, using the characterization result of [8]. It is interesting to explore
whether similar results can be proved for problems that require repeated coordination (e.g.,
I-ezclusion).

Finally, there remains the fundamental unanswered question raised by this work: Can wait-
free (highly resilient) computation be performed at the price of no more than a logarithmic
slowdown? Even more strongly, are there O(log n) time wait-free algorithms for all problems
that have wait-free solutions?

Following a preliminary version of our work, first steps were made towards answering this
question in the context of randomized computation [461. Based on the alternated-interleaving
method presented in Section 6.2, it is shown that any decision problem that has a wait-free
or expected wait-free 0 solution algorithm, has an expected wait-fie algorithm with the same
worst case time complexity, that takes only O(logn) expected time*' in fault-free executions.
However, the above question itself is still far from being answered.

Acknowledgements:

We would like to thank Jennifer Welch for careful readin of an earlie version of the paper
and for many helpful comments. Thanks are also due to Cynthia Dwosk, Maurice Berkihy,
Mike Saks, Marc Snir and Heather Wal, for he l discussions on the topic of this paper.

10Aa expecte wait-fe algorithm is a adomi lorithm tbt is oly xpected, ther thm guaateed,
to tminated within a site number of step&

ITb is optimal by a utmai*btiorwad extension of our lower bound to the cm of randomimd compatation

34

References

(1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit, "Atomic Snapshots of
Shared Memory," Proc. 9th A CM Symp. on Principles of Distributed Computing, Quebec-
City, August 1990, pp. 1-14.

[2] J. Anderson, "Composite Registers," Proc. 9th A CM Symp. on Principles of Distributed
Computing, Quebec-City, August 1990 pp. 15-30.

[3] E. Arjomandi, M. Fischer and N. Lynch, "Efficiency of Synchronous Versus Asynchronous
Distributed Systems," Journal of the ACM, Vol. 30, No. 3 (1983), pp. 449-456.

[4] J. Aspnes and M. Herlihy, "Fast Randomized consensus Using Shared Memory," Journal
of Algorithms, Vol. 11, pp. 441-461, September 1990.

[5] H. Attiya, A. Bar-Noy and D. Dolev, "Sharing Memory Robustly in Message-Passing
Systems," 9th Annual ACM Symposium on Principles of Distributed Computing (PODC),
Quebec-City, August 1990, pp. 363-376.
Expanded version: Technical Memo MIT/LCS/TM-423, Laboratory for Computer Sci-
ence, MIT, February 1990.

[6] H. Attiya and N. Lynch, "Time Bounds for Real-Time Process Control in the Presence of
Timing Uncertainty," in proceedings of the 10th IEEE Real-Time Systems Symposium,
Santa-Monica, December 1989, pp. 268-284.

Expanded version: Technical Memo MIT/LCS/TM-403, Laboratory for Computer Sci-
ence, MIT, July 1989.

[7] H. Attiya, N. Lynch and N. Shavit, "Are Wait-Free Algorithms Fast?" 31st Annual
Symposium on the Foundations of Computer Science, St. Louis, October 1990.

[8] 0. Biran, S. Moran and S. Zaks, "A Combinatorial Characterization of the Distributed
Tasks which are Solvable in the Presence of One Faulty Processor," Journal of Algorithms,
Vol. 11, pp. 420-440, September 1990.

[9] B. Coan and C. Dwork, "Simultaneity is Harder than Agreement", Proc. 5th IEEE Sym-
posium on Reliability in Distributed Software and Database Systems, pp. 141-150, 1986.

[10] C. Dwork and D. Skeen, "The Inherent Cost of Nonblocking Commitment," Proc. 2nd
ACM Symp. on Principles of Distributed Computing, 1983, pp. 1-11.

[11] S. Cook, C. Dwork and R. Reischuk, "Upper and Lower Time Bounds for Parallel RAMS
Without Simultaneous Writes," SIAM J. Computing, Vol. 15, No. 1, 1986, pp. 87-98.

[12] R. Cole and 0. Zajicek, "The APRAM: Incorporating Asynchrony into the PRAM model,"
Proc. 1st ACM Symp. on Parallel Algorithms and Architectures, 1989, pp. 169-178.

35

[13] R. Cole and 0. Zajicek, "The Expected Advantage of Asynchrony," Proc. 2nd A CMSymp.
on Parallel Algorithms and Architectures, 1990, pp. 85-94.

[14] D. Dolev, E. Gafni and N. Shavit, "Toward a Non-Atomic Era: e-Exclusion as a Test
Case," Proc. 2Oth A CM Symp. on the Theory of Computing, 1988, pp. 78-92.

[15] D. Dolev, N. Lynch, S. Pinter, E. Stark and W. Weihl, "Reaching Approximate Agreement
in the Presence of Faults," Journal of the ACM, Vol. 33, No. 3, 1986, pp. 499-516.

[16] D. Dolev, R. Reischuk and H. R. Strong, "Eventual Is Earlier Than Immediate," Proc.
23rd IEEE Symp. on Foundations of Computer Science, 1982, pp. 196-203.

[17] D. Dolev, C. Dwork and L. Stockmeyer, "On the Minimal Synchrony Needed for Dis-
tributed Consensus," Journal of the ACM, Vol. 34, No. 1 (January 1987), pp. 77-97.

[18] C. Dwork and Y. Moses, "Knowledge and Common Knowledge in a Byzantine Environ-
ment: Crash Failures," to appear in Information and Computation.

[19] A. Fekete, "Asymptotically Optimal Algorithms for Approximate Agreement," Proc. 5th
A CM Symp. on Principles of Distributed Computing, 1986, pp. 73-87.

[20] A. Fekete, "Asynchronous Approximate Agreement," Proc. 6th A CM Symp. on -Principles
of Distributed Computing, 1987, pp. 64-76.

[21] M. Fischer, N. Lynch and M. Paterson, "Impossibility of Distributed Consensus with One
Faulty Processor," Journal of the ACM, Vol. 32, No. 2 (1985), pp. 374-382.

[22] P. Gibbons, "Towards Better Shared Memory Programming Models," Proc. lst ACM
Symp. on Parallel Algorithms and Architectures, 1989, pp. 169-178.

[23] M. P. Herlihy, "Impossibility and Universality Results for WaitFree Synchronization,"
Proc. 7th A CM Symp. on Principles of Distributed Computing, 1988, pp. 276-290.

[24] P. Kanellakis and A. Shvartsman, "Efficient Parallel Algorithms can be Made Robust,"
Proc. 8th A CM Symp. on Principles of Distributed Computing, 1989, pp. 211-221.

[251 Z. Kedem, K. Palem and P. Spirakis, "Efficient Robust Parallel Computations," Proc.
22nd ACM Symp. on Theory of Computing, 1990, pp. 138-148.

[26] L. Lamport, "The Synchronization of Independent Processes," Acta Informatica, Vol. 7,
No, 1 (1976), pp. 15-34.

[27] L. Lamport, "Proving the Correctness of Multiprocess Programs," IEEE Transactions on
Software Engineering, Vol. SE-3, No. 2 (March 1977) pp. 125-143.

[28] L. Lamport, "On Interprocess Communication. Part I: Basic Formalism," Distributed
Computing 1, 2 1986, 77-85.

36

[29] L. Lamport, "On Interprocess Communication. Part II: Algorithms," Distributed Com-
puting 1, 2 1986, pp. 86-101.

[30] L. Lamport, R. Shostak and M. Pease, "The Byzantine Generals Problem," ACM Trans-
actions on Programming Languages and Systems, Vol. 4, No. 3 (July 1982), pp. 382-401.

[31] B. Lampson, "Hints for Computer System Design", in Proc. 9th ACM Symposium on
Operating Systems Principles, 1983, pp. 33-48.

[32] M. Li, J. Tromp and P. M.B. Vitanyi, "How to Share Concurrent Wait-Free Variables,"
ICALP 1989. Expanded version: Report CS-R8916, CWI, Amsterdam, April 1989.

[33] M. Loui and H. Abu-Amara, "Memory Requirements for Agreement Among Unreliable
Asynchronous Processes," Advances in Computing Research, Vol. 4, JAI Press, Inc., 1987,
163-183.

[34] N. Lynch and M. Fischer, "On Describing the Behavior and Implementation of Distributed
Systems," Theoretical Computer Science, Vol. 13, No. 1 (January 1981), pp. 17-43.

(35] N. Lynch and K. Goldman, Lecture notes for 6.852. MIT/LCS/RSS-5, Laboratory for
Computer Science, MIT, 1989.

[36] S. Mahaney and F. Schneider, "Inexact Agreement: Accuracy, Precision, and Graceful
Degradation," Proc. 4th ACM Sgrnp. on Principles of Distributed Computing, 1985, pp.
237-249.

[37] C. Martel, A. Park and R. Subramonian, "Optimal Asynchronous Algorithms for Shared
Memory Parallel Computers," Technical Report CSE-89-8, Division of Computer Science,
University of California, Davis, July 1989.

(38] C. Martel, R. Subramonian and A. Park, "Asynchronous PRAMs are (Almost) as Good
as Synchronous PRAMs," Proc. 31st IEEE Symp. on Foundations of Computer Science,
1990, pp. 590-599.

[39] M. Merritt, F. Modugno and M. Tuttle, "Time Constrained Automata," manuscript,
November 1988.

[40] Y. Moses and M. Tuttle, "Programming Simultaneous Actions using Common Knowl-
edge," Algoritmica, Vol. 3, 1988, pp. 121-169.

[41] N. Nishimura, "Asynchronous Shared Memory Parallel Computation," Proc. 2nd ACM
Symp. on Parallel Algorithms and Architectures, pp. 76-84, 1990.

[42] G. Peterson, "Concurrent Reading While Writing," ACM Transactions on Programming
Languages and Systems, Vol. 5, No. 1 (January 1983), pp. 46-55.

[43] G. Peterson, and J. Burns, "Concurrent Reading While Writing II: The Multi-Writer
Case," Proc. 28th IEEE Symp. on Foundations of Computer Science, 1987, pp. 383-392.

37

[44] G. Peterson and M. Fischer, "Economical Solutions for the Critical Section Problem in a
Distributed System," Proc. 9th A CM Symp. on Theory of Computing, 1977, pp. 91-97.

[45] R. Schaffer, "On the Correctness of Atomic Multi-Writer Registers," MIT/LCS/TM-364,
June 1988.

[46] M. Saks, N. Shavit and H. Woll, "Optimal Time Randomized Consensus - Making Re-
silient Algorithms Fast in Practice," Proc. of the 2nd A CM Symposium on Discrete Algo-
rithms, pp. 351-362 January 1991.

[47] D. Skeen, "Crash Recovery in a Distributed Database System," Memorandum No.
UCB/ERL M82/45, Electronics Research Laboratory, Berkeley, May 1982.

[48] P. Vitanyi and B. Awerbuch, "Atomic Shared Register Access by Asynchronous Hard-
ware," Proc. 27th IEEE Symp. on Foundations of Computer Science, pp. 233-243, 1986.

[49] J. Wyllie, The Complexity of Parallel Computation, Ph.D. thesis, -Cornell University,
August 1979. Technical Report TR 79-387, Department of Computer Science.

38

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Atn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Atn: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555

qt ,*

